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ABSTRACT: The weighted ensemble (WE) family of methods is
one of several statistical mechanics-based path sampling strategies
that can provide estimates of key observables (rate constants and
pathways) using a fraction of the time required by direct simulation
methods such as molecular dynamics or discrete-state stochastic
algorithms. WE methods oversee numerous parallel trajectories
using intermittent overhead operations at fixed time intervals,
enabling facile interoperability with any dynamics engine. Here, we
report on the major upgrades to the WESTPA software package, an
open-source, high-performance framework that implements both
basic and recently developed WE methods. These upgrades offer
substantial improvements over traditional WE methods. The key
features of the new WESTPA 2.0 software enhance the efficiency
and ease of use: an adaptive binning scheme for more efficient surmounting of large free energy barriers, streamlined handling of
large simulation data sets, exponentially improved analysis of kinetics, and developer-friendly tools for creating new WE methods,
including a Python API and resampler module for implementing both binned and “binless” WE strategies.

1. INTRODUCTION

The field of molecular dynamics (MD) simulations of
biomolecules arguably is following a trajectory that is typical
of mathematical modeling efforts: as scientific knowledge
grows, models grow ever more complex and ambitious,
rendering them challenging for computation. While early
MD simulations focused on single-domain small proteins,1

modern simulations have attacked ever larger complexes2,3 and
even entire virus particles.4−7 This trend belies the fact that
record-setting small-protein simulations in terms of total
simulation time remain limited to the millisecond scale on
special-purpose resources8 and to <100 μs on typical university
clusters. These limitations have motivated the development of
numerous approaches to accelerate sampling, among which are
rigorous path sampling approaches capable of providing
unbiased kinetic and mechanistic observables.9−18

Our focus is the weighted ensemble (WE) path sampling
approach,17,19 which has helped transform what is feasible for
molecular simulations in the generation of pathways for long-
timescale processes (>μs) with rigorous kinetics. Among these
simulations are notable applications, including atomically
detailed simulations of protein folding,20 coupled protein
folding and binding,21 protein−protein binding,22 protein−
ligand unbinding,23 and the large-scale opening of the SARS-

CoV-2 spike protein.24 The latter is a significant milestone
both in the system size (half a million atoms) and timescale
(seconds).24 Instrumental to the success of the above
applications have been advances in not only WE methods
but also software.24

Here, we present the next generation (version 2.0) of the
most cited, open-source WE software called WESTPA (WE
Simulation Toolkit with Parallelization and Analysis).25

WESTPA 2.0 is designed to further enhance the efficiency of
WE simulations with high-performance algorithms for the
following: (i) further enhanced sampling via restarting from
reweighted trajectories, adaptive binning, and/or binless
strategies, (ii) more efficient handling of large simulation
data sets, and (iii) analysis tools for the estimation of first
passage time (FPT) distributions and for more efficient
estimation of rate constants. Similar to its predecessor,
WESTPA 2.0 is a highly scalable, portable, and interoperable
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Python package that embodies the full range of the WE’s
capabilities, including a rigorous theory for any type of
stochastic dynamics (e.g., MD and Monte Carlo simulations)
that is agnostic to the model resolution.26 In comparison to
other open-source WE packages such as accelerated weighted
ensemble with a "Work Queue" distributed-computing frame-
work (AWE-WQ)27 and a weighted ensemble python (wepy)
tool,28 WESTPA is unique in its (i) high scalability with nearly
perfect scaling out to thousands of CPU cores24 and GPUs and
(ii) demonstrated ability to interface with a variety of dynamics
engines and model resolutions, including atomistic,22 coarse-
grained,29 whole-cell,30 and nonspatial system models.31,32

After a brief overview of the WE strategy (Section 2), we
describe the organization of WESTPA 2.0 (Section 3) and new
analysis tools that further expand the capabilities of the
software package (Section 4). Together, these features greatly
facilitate the execution and analysis of WE simulations of even
larger systems and/or slower timescales.

2. OVERVIEW OF THE WE PATH SAMPLING
STRATEGY

The WE strategy enhances the sampling of rare events (e.g.,
protein folding, protein binding, and chemical reactions) by
orchestrating the periodic resampling of multiple, parallel
trajectories at fixed time intervals τ (Figure 1).17 The
statistically rigorous resampling scheme maintains an even
coverage of the configurational space by replicating (“split-
ting”) trajectories that have made transitions to newly visited
regions and potentially terminating (“merging”) trajectories
that have overpopulated previously visited regions. The
configurational space is typically defined by a progress
coordinate that is divided into bins where an even coverage
of this space is defined as a constant number of trajectories

occupying each bin; alternatively, trajectories may be grouped
by a desired feature for “binless” resampling schemes.33

Importantly, trajectories are assigned statistical weights that
are rigorously tracked during resampling; when trajectories are
replicated in a given bin, the weights are split among child
trajectories and when trajectories are terminated in a
probabilistic fashion, the weights are merged with a continued
trajectory of that bin. This rigorous tracking ensures that no
bias is introduced into the ensemble dynamics, enabling direct
estimates of rate constants.26

WE simulations can be run under equilibrium or non-
equilibrium steady-state conditions. To maintain nonequili-
brium steady-state conditions, trajectories that reach the target
state are “recycled” back to the initial state, retaining the same
statistical weight.34 The advantage of equilibrium WE
simulations over steady-state WE simulations is that the target
state need not be strictly defined in advance since no recycling
of trajectories at the target state is applied.35 On the other
hand, steady-state WE simulations have been more efficient in
yielding successful pathways and estimates of rate constants.
Equilibrium observables can be estimated from either
equilibrium WE simulations or the combination of two
nonequilibrium steady-state WE simulations in the opposite
directions when the historical information is taken into
account.35

3. ORGANIZATION OF WESTPA 2.0

Below, we present the organization of WESTPA 2.0, beginning
with code reorganization to facilitate software development
(Section 3.1) and then proceeding to a description of a Python
application programming interface (API) for setting up,
running, and analyzing WE simulations (Section 3.2); a
minimal adaptive binning (MAB) mapper (Section 3.3); a

Figure 1. Basic WE protocol. As illustrated for the simulation of a protein−protein binding process, a two-dimensional progress coordinate is
divided into bins with the goal of occupying each bin with a target number of four trajectories. Four equally weighted trajectories are initiated from
the unbound state and subjected to a resampling procedure at periodic time intervals τ for the following: (i) to enrich for success, trajectories that
make transitions to less-visited bins are replicated to generate a target of four trajectories in these bins, splitting the weights evenly among the child
trajectories (green spheres) and (ii) to save computing time, the lowest-weight trajectories in bins that have exceeded four trajectories are
terminated, merging their weights with those of higher-weight trajectories in these bins (purple spheres). Spheres are sized according to their
statistical weights.
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Figure 2. Reorganization of WESTPA 1.0 to WESTPA 2.0. In version 2.0, WESTPA is installed using Python and relies on only a single
environment variable such that commands can be called directly through Python. To reflect these changes, we have updated our original suite of
WESTPA tutorials for version 2.0 (https://github.com/westpa/westpa_tutorials/tree/westpa-2.0-restruct).36,37

Figure 3. Comparison of workflows for setting up and running WE simulations using WESTPA 1.0 and 2.0, a demonstration of using the Python
API for WESTPA 2.0, and GPU performance of the updated API within a cloud computing environment. (A) The Python API in WESTPA 2.0
enables a user to fully define, initialize, and run a WESTPA simulation from within a single Python script (right panel), without needing to invoke
command line utilities required in WESTPA 1.0 (left panel). For backward compatibility, all original functionality provided in version 1.0 for
invoking WESTPA (e.g., w_init and w_run tools) via shell scripts remains available in WESTPA 2.0. (B) Example of defining a custom
simulation manager with the WESTPA 2.0 API (top panel) and using the newly defined simulation manager and WESTPA 2.0 API to
programmatically control and run a WE simulation (bottom panel). Here, the WESTSimulationManager class sends work to the
WESTSegmentRunner class, which unpacks and runs the scripts specified from the WESTPA config file (west.cfg). (C) Example workflow
diagram from the Orion user interface using the Python classes constructed from the internal WESTPA APIs presented in Figure 3B. Here, a kernel
(Initialize WESTPA Simulation) initializes both the WESTSimulationManager (Manage WESTPA Segments) and the WEST-
SimulationRunner (Run WESTPA Segments) kernels from Figure 3B, which are connected in a cycle to manage splitting and merging.
Finally, all data are exported through a Post Process and Dataset Writer kernel for final data processing and storage. (D) Performance of the
WESTPA 2.0 API using the WESTSimulationRunner class from Figure 3B within an Amazon Web Services environment using a
combination of numerous g4dn instances as a function of the wall clock time in Universal Coordinated Time (UTC) units. Here, the per-iteration
scaling reaches thousands of GPUs in just under a few hours for a test system of butanol crossing a neat 1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine (POPC) membrane bilayer using the WESTPA 2.0 API with the OpenMM 7.5 MD engine.41
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generalized resampler module that enables the implementation
of both binned and binless schemes (Section 3.4); and an
HDF5 framework for more efficient handling of large
simulation data sets (Section 3.5).
3.1. Code Reorganization to Facilitate Software

Development. The WESTPA 2.0 software is designed to
facilitate the maintenance and further development of the
software according to the established and emerging best
practices for Python development and packaging. The code has
been consolidated and reorganized to better indicate the role
of each module (Figure 2). The software can now be installed
as a standard Python package using pip or by running
setup.py. The package will continue to be available
through Conda via conda-forge, which streamlines the
installation process by enabling WESTPA and all software
dependencies to be installed at the same time. We have
implemented automated GitHub Actions for continuous
integration testing and code quality checks using the Black
Python code formatter as a precommit hook, alongside flake8
for nonstyle linting. Templates are provided for GitHub issues
and pull requests. Both the user’s and developer’s guides are
available on the GitHub wiki along with the Sphinx
documentation of key functions with autogenerated docstrings.
Further support will continue to be provided through

WESTPA users’ and developers’ email lists hosted on Google
Groups (linked on https://westpa.github.io).

3.2. Python API for Setting up, Running, and Analysis
of WE Simulations. To simplify the process of setting up and
running WE simulations, WESTPA 2.0 features a Python API
that enables the user to execute the relevant commands within
a single Python script instead of invoking a series of command-
line tools, as previously done in WESTPA 1.0 (Figure 3A).
This also provides tools for third-party developers to build and
develop WESTPA-based applications and plugins, for example,
the integration of WESTPA into the cloud-based computing
platform, OpenEye Scientific’s Orion,38,39 or the history-
augmented Markov state model (haMSM) restarting plugin
(Section 4.2), which uses the results of a WESTPA simulation
to perform a steady-state analysis then restart the simulation
based on the results of that analysis.
Figure 3B provides an example of how to programmatically

call the WESTPA 2.0 API from the Orion cloud platform,
which could in principle be any Python script within any
supercomputing or personal computing environment. First, a
developer can write any custom simulation or work manager of
their choice by subclassing or completely rewriting core
WESTPA components (top panel). Second, a workflow can be
constructed by invoking a simple set of WESTPA 2.0 Python

Figure 4. The MAB scheme is more efficient in surmounting free energy barriers than manual fixed binning schemes. (A) Bin positions and
trajectories after replication using the MAB scheme vs a manual binning scheme with the same positions of trajectories (blue circles, sized
according to statistical weights) along a chosen progress coordinate and a target of two trajectories per bin. The MAB scheme adaptively positions
bins along the progress coordinate by placing equally spaced bins (in this case, three bins, as indicated by solid vertical lines) between the positions
of the trailing and leading trajectories along with separate bins (boxes) for these trajectories and a third trajectory in a bottleneck region (pink)
along the free energy barrier. (B) Enlarged “bottle” diagrams highlighting the bottleneck region (pink) along with the relative positions and weights
of trajectories for the MAB and manual binning schemes in panel (A). In contrast to the manual binning scheme where trajectories may stall in a
bottleneck region, the MAB scheme automatically detects trajectories in this region, replicating these trajectories to enrich for success in
surmounting the barrier. (C) MAB scheme options in the westpa.core.binning module and the corresponding user-defined options in the
west.cfg file. (D) Flux of a drug-like molecule (tacrine) permeating through a neat POPC membrane as a function of the molecular time using
fixed binning (blue) or adaptive binning (MAB scheme) (red). Solid lines represent mean fluxes, and the shaded regions represent 95% confidence
intervals. The molecular time is defined as Nτ, where N is the number of WE iterations and τ is the fixed time interval (100 ps) of each WE
iteration. Simulations were run using WESTPA 2.0 and OpenMM 7.5 MD engine.41 (E) Schematic of a simple recursive binning case in which
closely spaced inner bins are “nested” within a wider outer bin.
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commands to perform any WE simulation (bottom panel).
Typically, a user of the WESTPA 2.0 Python API only needs a
handful of API endpoints to perform a complicated simulation
protocol. As an example of the power of the simplicity of the
Python API, we demonstrate how a workflow can be
constructed from the defined workflow kernels (Figure 3C)
and show the GPU performance over wall-clock time (in
Coordinated Universal Time; UTC) from a drug-like molecule
in a membrane permeability simulation (Figure 3D). Using the
internal API, a user’s simulation can request large amounts of
computational resources per iteration. In this case, thousands
of GPUs are requested per WE iteration for a simulation of
butanol crossing a natural membrane mimetic system (https://
github.com/westpa/westpa2_tutorials).40

To facilitate the development of custom analysis workflows
in cases where more flexibility is required than that of the
existing w_ipa analysis tool,36 WESTPA 2.0 includes the new
westpa.analysis Python API. This API provides a high-
level view of the data contained in the main WESTPA HDF5
file (west.h5) and facilitates retrieval of trajectory data,
reducing the overhead of writing custom analysis code in
Python and performing quick, interactive analysis of individual
trajectories (or walkers). The westpa.analysis API is
built on three core data types: run, iteration, and walker. A run
is a sequence of iterations; an iteration is a collection of walkers.
Key instance data can be accessed via attributes and methods.
For example, a walker has attributes such as the statistical
weight (weight), progress coordinate values (pcoords),
starting conformation (parent), and child trajectories after
replication (children) as well as a method, trace, to
trace its history (as a pure Python alternative to the w_trace
tool). The API also provides facilities for retrieving and
concatenating trajectory segments. These include support for
(i) type-aware concatenation of trajectory segments repre-
sented by NumPy arrays or MDTraj trajectories, (ii) use of
multiple threads to potentially increase performance when
segment retrieval is an I/O bound operation, and (iii) display
of progress bars. Finally, the API provides a convenience
function, time_average, for computing the time average
of an observable over a sequence of iterations (e.g., all or part of
a run).
3.3. MAB Mapper. To automate the placement of bins

along a chosen progress coordinate during WE simulation, we
have implemented the MAB scheme42 as an option in the
westpa.core.binning module. The MAB scheme
positions a specified number of bins along a progress
coordinate after each resampling interval τ by (1) tagging
the positions of the trailing and leading trajectories along the
progress coordinate and evenly placing a specified number of
bins between these positions and (2) tagging “bottleneck”
trajectories positioned on the steepest probability gradients
and assigning these trajectories to their own bins (Figure
4A,B). Despite its simplicity, the MAB scheme requires less
computing time than manual, fixed binning schemes in
surmounting large free energy barriers, resulting in more
efficient conformational sampling and estimation of rate
constants.42 To apply the MAB scheme, users specify the
MABBinMapper option along with accompanying parame-
ters such as the number of bins in the west.cfg file (Figure
4C).
Figure 4D illustrates the effectiveness of the MAB scheme in

enhancing the efficiency of simulating the membrane
permeability of a drug-like molecule (tacrine). Relative to a

fixed binning scheme, the MAB scheme results in an earlier flux
of tacrine through a model cellular membrane bilayer (∼5 vs
∼7 ns), and this flux increases more quickly, achieving values
that are 2 orders of magnitude higher for the duration of the
test.
The MAB scheme provides a general framework for the user

creation of more complex adaptive binning schemes.42 Users
can now specify nested binning schemes in the west.cfg
file (Figure 4E). To run WESTPA simulations under
nonequilibrium steady-state conditions (i.e., with the “recy-
cling” of trajectories that reach the target state) with the MAB
scheme, users can nest a MABBinMapper inside of a
RecursiveBinMapper bin and specify a target state as
the outer bins. Multiple individual MABBinMappers can be
created and placed at different locations of the outer bins using
a recursive scheme, offering further flexibility in the creation of
advanced binning schemes.

3.4. Generalized Resampler Module that Enables
Binless Schemes. In the original (default) WE resampling
scheme, trajectories are split and merged based on a predefined
set of bins.17 In WESTPA 2.0, we introduce a generalized
resampler module that enables the users to implement both
binned and “binless” resampling schemes, providing the
flexibility to resample trajectories based on a property of
interest by defining a grouping function. While grouping on the
state last visited (e.g., initial or target state) was previously
possible using the binning machinery in WESTPA 1.0,43 our
new resampler module provides a more general framework for
creating binless schemes by defining a group/reward function
of interest; such schemes enable the use of nonlinear progress
coordinates that may be identified by machine learning
techniques. Following others,44 the resampler module includes
options for (i) specifying a minimum threshold for trajectory
weights to avoid running trajectories with inconsequentially
low weights and (ii) specifying a maximum threshold for
trajectory weights to avoid a single large-weight trajectory from
dominating the sampling, increasing the number of uncorre-
lated successful events that reach the target state.
As illustrated in Figure 5, the implementation of a binless

scheme requires two modifications to the default WESTPA
simulation: (i) a user-provided group module containing the
methods needed to process the resampling property of interest
for each trajectory walker, and (ii) updates to the west.cfg
fi l e spec i f y ing the re samp l ing method in the
group_function keyword and the attribute in the
group_arguments keyword.
We provide two examples of implementing binless schemes

in the westpa-2.0-restruct branch of the WESTPA_Tutorials
GitHub repository (https://github.com/westpa/westpa_
t u t o r i a l s / t r e e / w e s t p a - 2 . 0 - r e s t r u c t ) . 3 7 T h e
basic_nacl_group_by_history example illustrates
the grouping of the trajectory based on its “history”, that is, a
shared parent N WE iterations back. The parameter N is
specified in the keyword hist_length under the
group_arguments keyword in the west.cfg file.
This WESTPA configuration file also specifies the name of
the grouping function method, group.walkers_by_-
history, in the group_function keyword. In the
basic_nacl_group_by_color example, trajectory
walkers are tagged based on “color” according to the state
last visited. Only walkers that have the same color are merged,
thereby increasing the sampling of pathways in both directions.
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State definitions are declared within the group_argu-
ments keyword in the west.cfg file.
3.5. HDF5 Framework for More Efficient Handling of

Large Simulation Data Sets. One major challenge of
running WE simulations has been the management of the
resulting large data sets, which can amount to tens of terabytes
over millions of trajectory files. To address this challenge, we
have developed a framework for storing the trajectory data in a
highly compressed and portable HDF5 file format. The format
is derived from the HDFReporter class implemented in the
MDTraj analysis suite45 and maintains compatibility with
NGLView,46 an iPython/Jupyter widget for the interactive
viewing of molecular structures and trajectories. A single
HDF5 file is generated per WE iteration, which includes a link
to each trajectory file stored in the main WESTPA data file
(west.h5). Thus, the new HDF5 framework in WESTPA
2.0 enables users to restart a WE simulation from a single
HDF5 file rather than millions of trajectory files and simplifies
data sharing as well as analysis. The dramatic reduction in the
number of trajectory files also eliminates a potentially large
overhead from the file system that results from the storage of
numerous small files. For example, a 53% overhead has been
observed for a 7.5-GB data set of 103,260 trajectory files
generated from NTL9 protein folding simulations (Figure 9),
occupying 11.5 GB of actual disk storage on a Lustre file
system.
To test the effectiveness of the HDF5 framework in reducing

the amount of data storage required for WE simulations, we
applied the framework to a set of three independent WE
simulations of Na+/Cl− association and one WE simulation
involving p53 peptide conformational sampling (Figure 6A,B).
Our results revealed 27 and 85% average reduction in the total
size of trajectory files generated during the Na+/Cl−

association and p53 peptide simulations, respectively, relative
to that obtained using WESTPA 1.0. Given a fixed number of

bins, the sizes of per-iteration HDF5 files were also shown to
converge as the simulation progresses (Figure 6C,D),
suggesting that the storage of trajectory data by iteration not
only facilitates the management of the data but also yields files
of roughly equal sizes. The difference in the reduction
efficiency that we observed between the Na+/Cl− and p53
peptide systems can be attributed to differences in the
simulation configurations including the format of the output
trajectories, restart files, and other factors such as the verbosity
of logging.
Our tests revealed that the additional steps introduced by

the HDF5 framework for managing the trajectory coordinate
and restart files did not have any significant impact on the
WESTPA runtime (Figure 6E), which is normalized by the
number of trajectory segments per WE iteration given that the
evolution of bin occupancies by trajectories can vary among
different runs due to the stochastic nature of the MD
simulations (after 60 iterations, the WESTPA 1.0 run occupied
six more bins than the WESTPA 2.0/HDF5 run). This
variation in the bin occupancy is unlikely to be affected by the
HDF5 framework since it simply manages the trajectory and
restart files and does not alter how the system is simulated.
The differences in bin occupancies/total number of trajectories
may also partially contribute to the large reduction in the per-
iteration file sizes for the HDF5 run observed in Figure 6D for
the p53 peptide. However, the majority of this file size
reduction results from efficient HDF5 data compression of
trajectory coordinate, restart, and log files. Finally, the
trajectory data saved in the HDF5 files can be extracted and
analyzed easily using MDTraj in combination with our new
analysis framework presented in Section 3.2 (Figure 6F).

4. ANALYSIS TOOLS
WESTPA 2.0 features new analysis tools for estimating rate
constants more efficiently using the distribution of “barrier
crossing” times (Section 4.1), accelerating the convergence
using a haMSM to reweight trajectories (Section 4.2) and
estimating the distribution of FPTs (Section 4.3).

4.1. RED Scheme for Rate Constant Estimation. To
more efficiently estimate the rate constants from WE
simulations, we have implemented the rates from event
durations (RED) scheme as an analysis tool called w_red in
the WESTPA 2.0 software. The RED scheme exploits the
transient ramp-up portion of a WE simulation by incorporating
the probability distribution of event durations (or “barrier
crossing” times) from a WE simulation as part of a correction
factor (Figure 7A).48 The correction factor accounts for the
systematic error that results from the statistical bias toward the
observation of events with short durations and reweights the
event duration distribution accordingly. When applied to an
atomistic WE simulation of a protein−protein binding process,
the RED scheme is >25% more efficient than the original WE
scheme17 in estimating the association rate constant (Figure
7B).48

The code for estimating the rate constants using the RED
scheme takes as an input the assign.h5 files and
direct.h5 files generated by the w_ipa analysis tool.
Users then specify in the analysis section of the west.cfg
file that analysis scheme w_red should analyze along with the
initial/final states and the number of frames per iteration.
Executing w_red from the command line will output the
corrected flux estimates as a new data set called
red_flux_evolution to the users’ existing direct.h5

Figure 5. Flowchart for implementing binless resampling schemes in
WESTPA 2.0. The implementation involves grouping trajectories by
feature (using the group_function keyword defined in the
group module) before splitting and merging. The functionality for
positioning bins along a chosen progress coordinate remains available
in WESTPA 2.0.
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file (Figure 7C). The RED rate constant estimates can then be
accessed through the Python h5py module and plotted versus
time to assess the convergence of the estimates. To estimate
the uncertainties in observables calculated from a small
number of trials (i.e., the number of independent WE
simulations), we recommend using the Bayesian bootstrap
approach.17,49 If it is not feasible to run multiple independent
simulations with a certain system due to either the system size
or the timescale of the process of interest, a user can apply a
Monte Carlo bootstrapping approach to a single simulation’s
RED rate constant estimate.
4.2. haMSM Restarting Plugin. haMSMs provide a

powerful tool for the estimation of stationary distributions and
rate constants from transient, unconverged WE data.50 Thus,
the approach has a similar motivation to the RED scheme.48 In

haMSM analysis, instead of discretizing trajectories via the WE
bins used by WESTPA, as in the WESS and WEED reweighting
plugins for a non-equilibrium steady state and equilibrium
state, respectively,34,35 a much finer and more numerous set of
“microbins” is employed to calculate the steady-state proper-
ties with a higher accuracy. These estimates, in turn, can be
used to start new WE simulations from a steady-state estimate,
accelerating the convergence of the simulation.49 The new
plugin provides a streamlined implementation of the restarting
protocol that runs automatically as part of a WESTPA
simulation, a capability which did not previously exist.
The msm_we package provides a set of analysis tools for

using typical WESTPA HDF5 output files, augmented with
atomic coordinates, to construct an haMSM. A nearly typical
MSM model-building procedure52 is used (Figure 8): WE

Figure 6. Demonstration of the usage of the HDF5 framework for two example systems. (A) Na+/Cl− association simulation where Na+ (yellow
sphere) and Cl− (green sphere) ions were solvated in explicit water (blue transparent surface). The distance between the two ions serves as the
progress coordinate. (B) Conformational sampling of a p53 peptide (residues 17−29) in a generalized Born implicit solvent using a progress
coordinate consisting of the heavy-atom root mean square deviation (rmsd) of the peptide from its MDM2-bound conformation.21 The molecular
surface of the p53 peptide is rendered as a transparent surface, with both the secondary (blue ribbon) and atomic structures overlaid. (C)
Comparison of file sizes of per-iteration HDF5 files for the Na+/Cl− association simulation as a function of the WE iteration using WESTPA 1.0
and 2.0 with the HDF5 framework. The result was obtained from three independent simulations where the solid curves show the mean file sizes,
while the light bands show the standard deviations. (D) Same comparison as panel (C) for a single simulation of the p53 peptide; hence, no error
bars are shown. (E) Comparison of wall-clock runtimes normalized by the number of trajectory segments per WE iteration using WESTPA 1.0 and
2.0 with the HDF5 framework option turned on. (F) Time evolution of the heavy-atom rmsd of the p53 peptide from its MDM2-bound
conformation using trajectories obtained using WESTPA’s analysis tools. Colors represent rmsds obtained from different iterations. WESTPA
simulations of Na+/Cl− association and the p53 peptide were run using the OpenMM 7.5 MD engine.41
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Figure 7. The RED scheme for more efficient rate constant estimation. (A) Schematic illustrating the RED scheme, which incorporates the
distribution of event durations as part of a correction factor for rate constant estimates that account for the statistical bias toward the observation of
events with short durations. (B) Application of the original and RED schemes to estimate the associate rate constant of a protein−protein binding
process involving the barnase and barstar proteins as a function of the molecular time in a WE simulation. The molecular time is defined as Nτ,
where N is the number of WE iterations and τ is the fixed time interval (20 ps) of each WE iteration. Simulations were previously run using
WESTPA 1.0 with the GROMACS 4.6.7 MD engine.47 (C) Schematic illustrating how users can generate a data set for calculating the RED
scheme correction factor from the simulation data stored in the analysis HDF5 files and apply the correction factor to the rate constant estimate
using the new w_red tool.

Figure 8. Workflow for constructing an haMSM from trajectories. First, the atomistic trajectories are featurized and discretized. The flux matrix is
then computed by computing fluxes between discrete states. The flux matrix is row-normalized into a transition matrix. Estimates of steady-state
populations and rate constants are obtained from the analysis of the transition matrix.51

Figure 9. Application of the haMSM restarting plugin to the ms folding process of the NTL9 protein. (A) Diagram of the haMSM restarting
plugin’s functionality. (B) Example of the restarting plugin functionality in the accelerated convergence of NTL9 folding rate constants from a
WESTPA 2.0 simulation using the AMBER 16 MD engine.53 haMSM estimates at restarting points are shown as dots, WE direct fluxes are shown
as red lines, and the 95% credibility region from the direct WE is shown in gray. (C) Distribution of the FPTs for NTL9 folding from the haMSM
built at the final restart of the simulation in Figure 9B. The weighted average of the blue FPT distribution is shown in black dashed lines, and the
MFPT estimate from the haMSM’s steady-state estimate is shown in green.51
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trajectories are discretized into clusters (microbins) and
transitions among microbins are analyzed. However, instead
of reconstructing entire trajectories, the msm_we analysis
computes the flux matrix by taking each weighted parent/child
segment pair, extracting and discretizing one frame from each,
and measuring the flux between themthat is, the weight is
transferred.
The haMSM restarting plugin in WESTPA 2.0 makes use of

the analysis tools provided by msm_we to incorporate this
functionality directly into WESTPA. It manages running a
number of independent simulations, initialized from some
starting configuration, and augments their output HDF5 with
the necessary atomic coordinates. Data from all independent
runs are gathered and used to build a single haMSM.
Stationary probability distributions and rate constants are
estimated from this haMSM.
This plugin can be used to start a set of new WE simulation

runs, initialized closer to the steady state (Figure 9). The
haMSM and the WE trajectory data are used to build a library
of structures and their associated steady-state weights. These
are used to initiate a new set of independent WE runs, which
should start closer to the steady state and thus converge more
quickly. The process can be repeated iteratively, as shown in
Figure 9A. The result of this restarting procedure is shown in
Figure 9B. For challenging systems, the quality of the haMSM
will greatly affect the quality of the steady-state estimate. A
further report is forthcoming on strategies for building high-
quality haMSMs.
To use this plugin, users must specify a function that ingests

coordinate data and featurizes the data. Dimensionality
reduction may be performed on this featurized data. An
effective choice of featurization provides a more granular
structural description of the system without including a large
number of irrelevant coordinates that add noise without adding
useful information. For example, a limited subset of the full
atoms such as only α-carbons or even a strided selection of the
α-carbons, may be sufficient to capture the important
structural information. Choosing the featurization based on
rotation-invariant distances, such as pairwise atomic distances
instead of atomic positions, can also help capture the structural
fluctuations without sensitivity to large-scale motion of the
entire system.
To validate the convergence of the restarted simulations, a

number of independent replicates of the restarting protocol
should be performed. These replicates should demonstrate
both the stability in flux estimates across restarts and relatively
constant-in-time direct fluxes within the restarts. If limited to a
single replicate, the agreement between the haMSM flux
estimate and the direct flux should also be validated.
4.3. Estimating FPT Distributions. FPTs and their mean

values (MFPTs) are key kinetics quantities to characterize
many stochastic processes (from a macrostate to another) in
chemistry and biophysics such as chemical reactions, ligand
binding and unbinding, protein folding, and diffusion processes
of small molecules within crowded environments. WE
simulations, via the Hill relation, provide unbiased estimates
of the MFPT directly once the steady state is reached34 or
indirectly via non-Markovian haMSM analysis,35 but the
mathematically rigorous estimation of the FPT distribution is
not available and has been a challenge for WE simulation.
Suaŕez and coworkers, however, have shown that the FPT
distributions estimated from haMSM models provide semi-
quantitative agreement with unbiased reference distributions in

different systems.54 Details on building haMSMs are described
above in Section 4.2, and more information can be found in
the refs 35 and 54.
Here, we extend and strengthen the earlier FPT distribution

analysis from WE data. The original code for calculating the
FPT distribution was published on a separate GitHub
repos i to ry (h t tp s ://g i thub . com/Zucke rmanLab/
NMpathAnalysis).55 Recently, we reorganized and refactored
the code in class hierarchical structures: a base class
(MatrixFPT) for calculating MFPT and FPT distributions
using a general transition matrix as an input parameter and two
derived classes (MarkovFPT and NonMarkovFPT) using
transition matrices from Markovian analysis and non-
Markovian analysis, respectively, as mentioned in the
haMSM in Section 4.2. The updated code has been merged
into the msm_we package described in Section 4.2 along with
some updates on building a transition matrix from classic MD
simulation trajectories.
The new code enables the robust estimation of the FPT

distribution. Figure 9C shows the non-Markovian estimation of
the FPT distribution of transitions between macrostates A and
B from the WE simulation of NTL9 protein folding.

5. SUMMARY

WESTPA is an open-source, highly scalable, interoperable
software package for applying the WE strategy, which greatly
increases the efficiency of simulating rare events (e.g., protein
folding and protein binding) while maintaining rigorous
kinetics. The latest WESTPA release (version 2.0) is a
substantial upgrade from the original software with high-
performance algorithms enabling the simulation of ever more
complex systems and processes and implementing new analysis
tools. WESTPA 2.0 has also been reorganized into a more
standard Python package to facilitate the code development of
new WE algorithms, including binless strategies. With these
features available in the WESTPA toolbox, the WE community
is well-poised to take advantage of the latest strategies for
tackling major challenges in rare-event sampling, including the
identification of slow coordinates using machine learning
techniques,56,57 and the interfacing of the WE strategy with
other software involving complementary rare-event sampling
strategies (e.g., OpenPathSampling,58,59 SAFFIRE,60 and
ScMile61) and analysis tools (e.g., LOOS,62,63 MDAnalysis,64,65

and PyEmma66). WESTPA has also been interfaced with
OpenEye Scientific’s Orion platform39 on the Amazon Web
Services cloud computing facility. We hope that the above new
features of WESTPA will greatly facilitate the efforts by the
scientific community to tackle grand challenges in the
simulation of rare events in a variety of fields, including the
molecular sciences and systems biology.
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